Tallinn University of Technology

Division of Chemistry

The Division of Chemistry is part of the Department of Chemistry and Biotechnology at Tallinn University of Technology. The main research areas of the division include analytical, computational, industrial, organic, supramolecular, and wood chemistry. The Division of Chemistry is responsible for education in these fields at the bachelor's, master's, and doctoral levels, thus ensuring the ongoing cultivation of proficient specialists in chemistry. In our research and teaching, we put emphasis on the development and implementation of sustainable and green thinking.

The research and teaching facilities at the Division of Chemistry are furnished with modern equipment, supporting high-level research and education. A total of 10 research groups operates within our division, with approximately 80 academic staff members, including 4 professors and 25 doctoral students. Our researchers are engaged in international networks and cooperations, making their research worldwide visible.

Pamphlet of the Division of Chemistry

Head of division

Analytical Chemistry

Analytical chemistry can be considered an inseparable part of many scientific disciplines and materials production. All methods that are concerned with the identification, quantification and characterization of substances in complex matrices are associated with the application of analytical chemistry.

Our research aims at the development and application of new, environmentally friendly and reliable analytical techniques for environmental, food, biomass, forensic and clinical analysis. For that we utilize a wide range of instrumentation tools and technology. This incorporate mass spectrometry, separation analysis, and hybrid technologies, such as HPLC/MS nad GC/MS. The varying analytical instruments and equipment solutions also available in our lab, include content analyzers, chromatographs, titrators, spectrometers and other specialties.

We strive to contribute to a safer and healthier world by promoting the Green Analytical Chemistry concept in our research. We develop analysis techniques and procedures to decrease or eliminate solvents, reagents, and other materials that are dangerous to the individual or the ecosystem and provide rapid and energy-saving methodologies. For that we apply statistical experimental design (DOE) to decrease the amount of experiments during process optimization stage and develop non-destructive (sample preparation minimized) cutting-edge analytical technologies, combined with chemometric tools (multidimensional data analysis and modelling), which are almost free of hazardous chemicals and waste, fast and provide accurate, reliable and consistent results.

We conduct multidisciplinary R&D projects in collaboration with other research groups and companies. For additional information visit our group website

GROUP WEBSITE

If you are a student and interested in non-routine, specific analysis and method development, join our group!

Members

Maria Kulp, Senior researcher, group leader
Maria Kuhtinskaja, Docent
Olga Bragina, Researcher
Evelin Solomina, Specialist
Tran Ho, PhD student
Olivia-Stella Salm, PhD student
Vyacheslav Shuvalov, MSc student
Violetta Umerenkova, MSc student
Marleen Leemet, MSc student
Alisia Teras, student
Karl Romek Staškevitš, student
Annabel Taniel, student

Saar-Reismaa, P.; Bragina, O.; Kuhtinskaja, M.; Reile, I.; Laanet, P.-R.; Kulp, M.; Vaher, M. Extraction and Fractionation of Bioactives from Dipsacus Fullonum L. Leaves and Evaluation of Their Anti-Borrelia Activity. Pharmaceuticals 2022, 15, 87. https://doi.org/10.3390/ph15010087

Jõul, P.; Ho, T.T.; Kallavus, U.; Konist, A.; Leiman, K.; Salm, O.-S.; Kulp, M.; Koel, M.; Lukk, T. Characterization of organosolv lignins and their application in the preparation of aerogels. Materials 2022, 15, 2861. https://doi.org/10.3390/ma15082861

Usmani, Z.; Kulp, M.; Lukk, T. Bioremediation of lindane contaminated soil: Exploring the potential of actinobacterial strains. Chemosphere 2021, 278, 130468. https://doi.org/10.1016/j.chemosphere.2021.130468

Saar-Reismaa, P.; Kotkas, K.; Rosenberg, V.; Kulp, M.; Kuhtinskaja, M.; Vaher, M. Analysis of Total Phenols, Sugars, and Mineral Elements in Colored Tubers of Solanum tuberosum L. Foods 2020, 9, 1862. https://doi.org/10.3390/foods9121862

Saar-Reismaa, P.; Brilla, C.-A.; Leiman, K.; Kaljurand, M.; Vaher, M.; Kulp, M.; Mazina-Šinkar, J. Use of a newly-developed portable capillary electrophoresis analyser to detect drugs of abuse in oral fluid: a case study. Talanta 2020, 211, 120662. https://doi.org/10.1016/j.talanta.2019.120662

Kuhtinskaja, M.; Bragina, O.; Kulp, M.; Vaher, M. Anticancer effect of the iridoid glycoside fraction from Dipsacus fullonum L. leaves. Natural Product Communications 2020, 15. https://doi.org/10.3390/ph15010087

Saar-Reismaa, P.; Tretjakova, A.; Mazina-Šinkar, J.; Vaher, M.; Kaljurand, M.; Kulp, M. Rapid and sensitive capillary electrophoresis method for the analysis of Ecstasy in an oral fluid. Talanta 2019, 197, 390-396. https://doi.org/10.1016/j.talanta.2019.01.029

Kulp, M.; Bragina, O. Capillary electrophoretic study of the synergistic biological effects of alkaloids from Chelidonium majus L. in normal and cancer cells. Analytical and bioanalytical chemistry 2013, 405, 3391-3397. https://doi.org/10.1007/s00216-013-6755-y

Catalysis

The main area of the research in professor Tõnis Kanger group is asymmetric organic synthesis. Various methods of catalysis (organo-, metal- and enzymatic catalysis) are used separately or in cooperative manner. Special attention is turned to the increase of efficiency of reactions by using selective catalysts, cascade or one-pot reactions. As a new method, a halogen bond donor catalyzed asymmetric reactions are studied. New reactions will be applied on the synthesis of biologically active compounds and their derivatives. A characteristic feature of the research is the application of the principles of sustainable and green chemistry in asymmetric synthesis. The synthesis is supported by spectroscopic and crystallographic experiments, chromatography and quantum chemical calculations.

Members of the catalysis group are Tõnis Kanger, Kadri Kriis, Andrus Metsala, Kristin Erkman, Kaarel Hunt, Harry Martõnov, Annette Miller and Kerli Tali.

GROUP WEBSITE

katalyys_2022

Murre, A.; Mikli, V.; Erkman, K.; Kanger, T. Primary amines as heterogeneous catalysts in an enantioselective [2,3]-Wittig rearrangement reaction. iScience, 2023 Sep 6; 26 (10):107822. DOI link

Sihtmae, M.; Silm, E.; Kriis, K.; Kahru, A.; Kanger, T. Aminocatalysts are More Environmentally Friendly than Hydrogen-Bonding Catalysts. ChemSusChem202215, e202201045. DOI link

Hunt, K. E.; García-Sosa, A. T.; Shalima, T.; Maran, U.; Vilu, R.; Kanger, T. Org. Biomol. Chem., 202220, 4724−4735. DOI link

Kriis, K.; Martõnov, H.; Miller, A.; Erkman, K.; Järving, I.; Kaasik, M.; Kanger, T. Multifunctional Catalysts in the Asymmetric Mannich Reaction of Malononitrile with N-Phosphinoylimines: Coactivation by Halogen Bonding versus Hydrogen Bonding. J. Org. Chem202287 (11), 7422−7435. DOI link

Silm, E.; Järving, I.; Kanger, T. Asymmetric organocatalytic Michael addition of cyclopentane-1,2-dione to alkylidene oxindole. Beilstein Journal of Organic Chemistry 202218, 167−173. DOI link

Murre, A.; Erkman, K.; Järving, I.; Kanger, T. Asymmetric Chemoenzymatic One-Pot Synthesis of α-Hydroxy Half-Esters. ACS Omega 2021631, 20686–20698. DOI link

Kimm, M.; Järving, I.; Ošeka, M.; Kanger, T. Asymmetric Organocatalytic [2,3]‐Wittig Rearrangement of Cyclohexanone Derivatives. Eur. J. Org. Chem2021, 3113–3120. DOI link

Kaasik, M.; Martõnova, J.; Erkman, K,: Metsala, A.; Järving, I.; Kanger, T. Enantioselective Michael addition to vinyl phosphonates via hydrogen bond-enhanced halogen bond catalysis. Chem. Sci., 2021, 12, 7561-7568. DOI link

Trubitsõn, D.; Martõnova, J.; Kudrjašova, M.; Erkman; K.; Järving, I.; Kanger T. Enantioselective Organocatalytic Michael Addition to Unsaturated Indolyl Ketones. Organic Letters202123 (5), 1820−1824. DOI link

Kõllo, M.; Kasari, M.; Kasari, V.; Pehk, T.; Järving, I.; Lopp, M.; Jõers, A.; Kanger, T. Designed whole-cell-catalysis-assisted synthesis of 9,11-secosterols. Beilstein Journal of Organic Chemistry 202117, 581−588. DOI link

Trubitsõn, D.; Kanger, T. Enantioselective Catalytic Synthesis of N-alkylated Indoles. Symmetry 202012, 1184. DOI link

Kaasik, M.; Kanger, T. Supramolecular Halogen Bonds in Asymmetric Catalysis. Frontiers in Chemistry 20208, 599064. DOI link

Trubitsõn, D.; Martõnova, J.; Erkman, K.; Metsala, A.; Saame, J.; Kõster, K.; Järving, I.; Leito, I.; Kanger, T. Enantioselective N-Alkylation of Nitroindoles under Phase-Transfer Catalysis. Synthesis 202052, 1047−1059. DOI link

Murre, A.; Erkman, K.; Kaabel, S.; Järving, I.; Kanger, T. Diastereoselective [2,3]-Sigmatropic Rearrangement of N-Allyl Ammonium Ylides. Synthesis 201951, 4183−4197. DOI link

Silm, E.; Kaabel, S.; Järving, I.; Kanger, T. Asymmetric Organocatalytic Michael Addition–Cyclisation Cascade of Cyclopentane-1,2-dione with Alkylidene Malononitriles. Synthesis 201951, 4198−4204. DOI link

Kimm, M.; Ošeka, M.; Kaabel, S.; Metsala, A.; Järving, I.; Kanger, T. [2,3]-Wittig Rearrangement as a Formal Asymmetric Alkylation of α-Branched Ketones. Organic Letters 201921, 13, 4976-4980. DOI link

Kaasik, M.; Metsala, A.; Kaabel, S.; Kriis, K.; Järving, I.; Kanger, T. Halo-1,2,3-triazolium Salts as Halogen Bond Donors for the Activation of Imines in Dihydropyridinone Synthesis. Journal of Organic Chemistry 201984, 4294−4303. DOI link

Kaasik, M.; Kaabel, S.; Kriis, K.; Järving, I.; Kanger, T. Synthesis of Chiral Triazole-Based Halogen Bond Donors. Synthesis 201951, 2128-2135. DOI link  

Peterson, A.; Kaasik, M.; Metsala, A.; Järving, I.; Adamson, J.; Kanger, T. Tunable chiral triazole-based halogen bond donors: assessment of donor strength in solution with nitrogen-containing acceptors. RSC Advances 20199, 11718−11721. DOI link 

Reitel, K.; Kriis, K.; Järvin, I.; Kanger, T. Study of the asymmetric organocatalyzed [3+2] annulation of cyclopropenone and β-keto ester. Chemistry of Heterocyclic Compounds 201854, 929−933. DOI link

Trubitsõn, D.; Žari, S.; Kaabel, S.; Kudrjashova, M.; Kriis, K.; Järving, I.; Pehk, T.; Kanger, T. Asymmetric Organocatalytic Cascade Synthesis of Tetrahydrofuranyl Spirooxindoles. Synthesis 201850, 314−322. DOI link

Ben Moussa, S.; Lachheb, J.; Gruselle, M.; Maaten, B.; Kriis, K.; Kanger, T.; Tõnsuaadu, K.; Badraoui, B. Calcium, Barium and Strontium apatites: A new generation of catalysts in the Biginelli reaction. Tetrahedron 201773, 6542−6548.  DOI link 

Metsala, A.; Žari, S.; Kanger, T. Reaction path scans: Aza-Michael reactions of isatin imines. Computational and Theoretical Chemistry 20171117, 30-40. DOI link 

Kaasik, M.; Kaabel, S.; Kriis, K.; Järving, J.; Aav, R.; Rissanen, K.; Kanger, T. Synthesis and Characterisation of Chiral Triazole‐Based Halogen‐Bond Donors: Halogen Bonds in the Solid State and in Solution. Chemistry - A European Journal 201723, 7337−7344. DOI link 

Ošeka, M.; Kimm, M.; Järving, I.; Lippur, K.; Kanger, T. Two Catalytic Methods of an Asymmetric Wittig [2,3]-Rearrangement. J. Org. Chem. 201782, 2889-2897. DOI link 

Kriis, K.; Melnik, T.; Lips, K.; Juhanson, I.; Kaabel, S.; Järving, I.; Kanger, T. Asymmetric Synthesis of 2,3,4-Trisubstituted Piperidines. Synthesis 201749, 604-614. DOI link

Metsala, A.; Žari, S.; Kanger, T. Aza-Michael Reactions of Isatin Imines: Deeper Insight and Origin of the Stereoselectivity. ChemCatChem 20168, 2961-2967. DOI link

Ošeka, M.; Kimm, M.; Kaabel, S.; Järving, I.; Rissanen, K.; Kanger, T. Asymmetric Organocatalytic Wittig [2,3]-Rearrangement of Oxindoles. Org. Lett. 201618, 1358-1361. DOI Link

Paju, A.; Kostomarova, D.; Matkevitš, K.; Laos, M.; Pehk, T.; Kanger, T.; Lopp, M. 3-Alkyl-1,2-cyclopentanediones by Negishi cross-coupling of a 3-bromo-1,2-cyclopentanedione silyl enol ether with alkylzinc reagents: An approach to 2-substituted carboxylic acid γ-lactones, homocitric and lycoperdic acids. Tetrahedron 201571, 9313–9320. DOI Link

Preegel, G.; Ilmarinen, K.; Järving, I.; Kanger, T.; Pehk, T.; Lopp, M. Enantioselective Organocatalytic Michael Addition-Cyclization Cascade of Cyclopentane-1,2-dione with Substituted (E)-2-oxobut-3-enoates. Synthesis 201547, 3805–3812. DOI Link

Lippur, K.; Kaabel, S.; Järving, I.; Rissanen, K.; Kanger, T. CaCl2, Bisoxazoline, and Malonate: A Protocol for an Asymmetric Michael Reaction. J. Org. Chem201580, 6336-6341. DOI Link

Kaasik, M.; Noole, A.; Reitel, K.; Järving, I.; Kanger, T. Organocatalytic conjugate addition of cyclopropylacetaldehyde derivatives to nitro olefins: En route to β- and γ-amino acids. Eur. J. Org. Chem2015, 1745-1753. DOI Link

Žari, S.; Metsala, A.; Kudrjashova, M.; Kaabel, S.; Järving, I.; Kanger, T. Asymmetric organocatalytic aza-michael reactions of isatin derivatives. Synthesis 201547, 875-886.  DOI Link

Kreek, K.; Kriis, K.; Maaten, B.; Uibu, M.; Mere, A.; Kanger, T.; Koel, M. Organic and carbon aerogels containing rare-earth metals: Their properties and application as catalysts. J. Non-Cryst. Solids 2014404, 43-48. DOI Link

Maaten, B.; Moussa, J.; Desmarets, C.; Gredin, P.; Beaunier, P.; Kanger, T.; Tõnsuaadu, K.; Villemin, D.; Gruselle, M. Cu-modified hydroxy-apatite as catalyst for Glaser-Hay CC homo-coupling reaction of terminal alkynes. J. Mol. Catal. A 2014393, 112-116. DOI Link

Preegel, G.; Noole, A.; Ilmarinen, K.; Järving, I.; Kanger, T.; Pehk, T.; Lopp, M. Enantioselective Organocatalytic Michael Addition of Cyclopentane-1,2-diones to Nitroolefins. Synthesis 201446, 2595–2600. DOI Link

Paju, A.; Kanger, T.; Müürisepp, A.-M.; Aid, T.; Pehk, T.; Lopp, M. Sonogashira cross-coupling of 3-bromo-1,2-diones: An access to 3-alkynyl-1,2-diones. Tetrahedron 201470, 5843-5848. DOI Link

Žari, S.; Kudrjashova, M.; Pehk, T.; Lopp, M.; Kanger, T. Remote activation of the nucleophilicity of isatin. Org. Lett. 201416, 1740-1743. DOI Link

Ošeka, M.; Noole, A.; Žari, S.; Öeren, M.; Järving, I.; Lopp, M.; Kanger, T. Asymmetric diastereoselective synthesis of spirocyclopropane derivatives of oxindole. Eur. J. Org. Chem2014, 3599-3606. DOI Link

Noole, A.; Malkov, A.; Kanger, T. Asymmetric organocatalytic synthesis of spiro-cyclopropaneoxindoles. Synthesis 201345, 2520-2524. DOI Link

Noole, A.; Ilmarinen, K.; Järving, I.; Lopp, M.; Kanger, T. Asymmetric synthesis of congested spiro-cyclopentaneoxindoles via an organocatalytic cascade reaction. J. Org. Chem. 201378, 8117-8122. DOI Link

Reitel, K.; Lippur, K.; Järving, I.; Kudrjašova, M.; Lopp, M.; Kanger, T. Asymmetric aminocatalytic Michael addition of cyclopropane-containing aldehydes to nitroalkenes. Synthesis 201345, 2679-2683. DOI Link

Noole, A.; Ošeka, M.; Pehk, T.; Öeren, M.; Järving, I.; Elsegood, M.R.J.; Malkov, A.V.; Lopp, M.; Kanger, T. 3-Chlorooxindoles: Versatile starting materials for asymmetric organocatalytic synthesis of spirooxindoles. Adv. Synth. Catal. 2013355, 829-835. DOI Link

Ausmees, K.; Kriis, K.; Pehk, T.; Werner, F.; Järving, I.; Lopp, M.; Kanger, T. Diastereoselective multicomponent cascade reaction leading to [3.2.0]-heterobicyclic compounds. J. Org. Chem. 201277, 10680-10687. DOI Link

Lippur, K.; Tiirik, T.; Kudrjashova, M.; Järving, I.; Lopp, M.; Kanger, T. Amination of quinolones with morpholine derivatives. Tetrahedron 201268, 9550-9555. DOI Link

Noole, A.; Järving, I.; Werner, F.; Lopp, M.; Malkov, A.; Kanger, T. Organocatalytic asymmetric synthesis of 3-chlorooxindoles bearing adjacent quaternary-tertiary centers. Org. Lett201214, 4922-4925. DOI Link

Žari, S.; Kailas, T.; Kudrjashova, M.; Öeren, M.; Järving, I.; Tamm, T.; Lopp, M.; Kanger, T. Organocatalytic asymmetric addition of malonates to unsaturated 1,4-diketones. Beil. J. Org. Chem. 20128, 1452-1457. DOI Link

Reile, I.; Paju, A.; Kanger, T.; Järving, I.; Lopp, M. Cyclopentane-1,2-dione bis(tert-butyldimethylsilyl) enol ether in asymmetric organocatalytic Mukaiyama-Michael reactions. Tetrahedron Lett. 201253, 1476-1478. DOI Link

Reinart-Okugbeni, R.; Ausmees, K.; Kriis, K.; Werner, F.; Rinken, A.; Kanger, T. Chemoenzymatic synthesis and evaluation of 3-azabicyclo[3.2.0]heptane derivatives as dopaminergic ligands. Eur. J. Med. Chem. 201255, 255-261. DOI Link

Noole, A.; Pehk, T.; Järving, I.; Lopp, M.; Kanger, T. Organocatalytic asymmetric synthesis of trisubstituted pyrrolidines via a cascade reaction. Tetrahedron: Asymmetry 201223, 188-198. DOI Link

Gruselle, M.; Kanger, T.; Thouvenot, R.; Flambard, A.; Kriis, K.; Mikli, V.; Traksmaa, R.; Maaten, B.; Tõnsuaadu, K. Calcium hydroxyapatites as efficient catalysts for the Michael C-C bond formation. ACS Catalysis 20111, 1729-1733. DOI Link

Ausmees, K.; Selyutina, A.; Kütt, K.; Lippur, K.; Pehk, T.; Lopp, M.; Žusinaite, E.; Merits, A.; Kanger, T. Synthesis and biological activity of bimorpholine and its carbanucleosid. Nucleos Nucleot Nucl 201130, 897-907. DOI Link

Noole, A.; Borissova, M.; Lopp, M.; Kanger, T. Enantioselective organocatalytic aza-ene-type domino reaction leading to 1,4-dihydropyridines. J. Org. Chem201176, 1538-1545. DOI Link

Kriis, K.; Ausmees, K.; Pehk, T.; Lopp, M.; Kanger, T. A novel diastereoselective multicomponent cascade reaction. Org. Lett. 201012, 2230-2233. DOI Link

Laars, M.; Raska, H.; Lopp, M.; Kanger, T. Cyclic amino acid salts as catalysts for the asymmetric Michael reaction. Tetrahedron: Asymmetry 201021, 562-565. DOI Link

Noole, A.; Lippur, K.; Metsala, A.; Lopp, M.; Kanger, T. Enantioselective Henry reaction catalyzed by Cu(II) salt and bipiperidine. J. Org. Chem. 201075, 1313-1316. DOI Link

Uudsemaa, M.; Kanger, T.; Lopp, M.; Tamm, T. pKa calculation for monoprotonated bipiperidine, bimorpholine and their derivatives in H2O and MeCN. Chem. Phys. Lett. 2010485, 83-86. DOI Link

Lippur, K.; Elmers, C.; Kailas, T.; Müürisepp, A.-M.; Pehk, T.; Kanger, T.; Lopp, M. Synthesis of 5,5'-disubstituted bimorpholines. Synth. Commun. 201040, 266-281. DOI Link

Laars, M.; Ausmees, K.; Uudsemaa, M.; Tamm, T.; Kanger, T.; Lopp, M. Enantioselective organocatalytic Michael addition of aldehydes to β-nitrostyrenes. J. Org. Chem. 2009, 3772-3775. DOI Link

Uudsemaa, M.; Laars, M.; Kriis, K.; Tamm, T.; Lopp, M.; Kanger, T. Influence of protonation upon the conformations of bipiperidine, bimorpholine, and their derivatives. Chem Phys. Lett. 2009471, 92-96. DOI Link

Laars, M.; Kriis, K.; Kailas, T.; Müürisepp, A.-M.; Pehk, T.; Kanger, T.; Lopp, M. Structural constraints for C2-symmetric heterocyclic organocatalysts in asymmetric aldol reactions. Tetrahedron: Asymmetry 200819, 641-645. DOI Link

Kanger, T.; Kriis, K.; Laars, M.; Kailas, T.; Müürisepp, A.-M.; Pehk, T.; Lopp, M. Bimorpholine-mediated enantioselective intramolecular and intermolecular aldol condensation. J. Org. Chem200772, 5168-5173. DOI Link

Kriis, K.; Laars, M.; Lippur, K.; Kanger, T. Bimorpholines as alternative organocatalysts in asymmetric aldol reactions. Chimia 200761, 232-235. DOI Link

Sulzer-Mossé, S.; Laars, M.; Kriis, K.; Kanger, T.; Alexakis, A. Synthesis and use of 3,3′-bimorpholine derivatives in asymmetric Michael addition and intramolecular aldol reaction. Synthesis 200711, 1729-1732. DOI Link

Aav, R.; Kanger, T.; Pehk, T.; Lopp, M. Synthesis of substituted cyclopentanones from 2-oxabicyclo[3.3.0]oct-6-en- 3-one. Proc. Est. Acad. Sci. Chem. 200756, 3-13. Direct Link

Lippur, K.; Kanger, T.; Kriis, K.; Kailas, T.; Müürisepp, A.-M.; Pehk, T.; Lopp, M. Synthesis of (2S,2′S)-bimorpholine N,N′-quaternary salts as chiral phase transfer catalysts. Tetrahedron: Asymmetry 200718, 137-141. DOI Link

Jõgi, A.; Paju, A.; Pehk, T.; Kailas, T.; Müürisepp, A.-M.; Kanger, T.; Lopp, M. Asymmetric synthesis of 2-aryl-5-oxotetrahydrofuran-2-carboxylic acids. Synthesis 2006, 3031-3036. DOI Link 

Kriis, K.; Kanger, T.; Laars, M.; Kailas, T.; Müürisepp, A.-M.; Pehk, T.; Lopp, M. Enantioselective synthesis of Wieland-Miescher ketone through bimorpholine-catalyzed organocatalytic aldol condensation. Synlett 2006, 1699-1702. DOI Link

Paju, A.; Laos, M.; Jõgi, A.; Päri, M.; Jäälaid, R.; Pehk, T.; Kanger, T.; Lopp, M. Asymmetric synthesis of 2-alkyl-substituted 2-hydroxyglutaric acid γ-lactones. Tetrahedron Lett. 200647, 4491-4493. DOI Link

Mossé, S.; Laars, M.; Kriis, K.; Kanger, T.; Alexakis, A. 3,3′-bimorpholine derivatives as a new class of organocatalysts for asymmetric Michael addition. Org. Lett. 20068, 2559-2562. DOI Link

Kanger, T.; Laars, M.; Kriis, K.; Kailas, T.; Müürisepp, A.-M.; Pehk, T.; Lopp, M. Anchimeric assistance in the case of vicinal dimesylate: Formation of enantiomeric or meso-bimorpholine. Synthesis 2006, 1853-1857. DOI Link

Kanger, T.; Raudla, K.; Aav, R.; Müürisepp, A.-M.; Pehk, T.; Lopp, M. Synthesis and derivatization of bis-nor Wieland-Miescher ketone. Synthesis 2005, 3147-3151. DOI Link

Aav, R.; Kanger, T.; Pehk, T.; Lopp, M. Unexpected reactivity of ethyl 2-(diethylphosphono)propionate toward 2,2-disubstituted-1,3-cyclopentanediones. Phosphorus, Sulfur Silicon Relat. Elem. 2005180, 1739-1748. DOI Link

Paju, A.; Kanger, T.; Pehk, T.; Eek, M.; Lopp, M. A short enantioselective synthesis of homocitric acid-γ-lactone and 4-hydroxy-homocitric acid-γ-lactones. Tetrahedron 200460, 9081-9084. DOI Link

Kriis, K.; Kanger, T.; Lopp, M. Asymmetric transfer hydrogenation of aromatic ketones by Rh(I)/bimorpholine complexes. Tetrahedron: Asymmetry 200415, 2687-2691. DOI Link

Paju, A.; Kanger, T.; Niitsoo, O.; Pehk, T.; Müürisepp, A.-M.; Lopp, M. Asymmetric oxidation of 3-alkyl-1,2-cyclopentanediones. Part 3: Oxidative ring cleavage of 3-hydroxyethyl-1,2-cyclopentanediones: Synthesis of α-hydroxy-γ-lactone acids and spiro-γ-dilactones. Tetrahedron: Asymmetry 200314, 2393-2399. DOI Link

Kriis, K.; Kanger, T.; Müürisepp, A.-M.; Lopp, M. C2-symmetric bimorpholines as chiral ligands in the asymmetric hydrogenation of ketones. Tetrahedron: Asymmetry 200314, 2271-2275. DOI Link

Kanger, T.; Ausmees, K.; Müürisepp, A.-M.; Pehk, T.; Lopp, M. A comparative study of the synthesis of C2-symmetric chiral 2,2′-biaziridinyls. Synlett 2003, 1055-1057. DOI Link

Paju, A.; Kanger, T.; Pehk, T.; Lindmaa, R.; Müürisepp, A.-M.; Lopp, M. Asymmetric oxidation of 3-alkyl-1,2-cyclopentanediones. Part 2: Oxidative ring cleavage of 3-alkyl-1,2-cyclopentanediones: Synthesis of 2-alkyl-γ-lactone acids. Tetrahedron: Asymmetry 200314, 1565-1573. DOI Link

Paju, A.; Kanger, T.; Pehk, T.; Müürisepp, A.-M.; Lopp, M. Asymmetric oxidation of 3-alkyl-1,2-cyclopentanediones. Part 1: 3-Hydroxylation of 3-alkyl-1,2-cyclopentanediones. Tetrahedron: Asymmetry 200213, 2439-2448. DOI Link

Paju, A.; Kanger, T.; Pehk, T.; Lopp, M. Direct asymmetric α-hydroxylation of 2-hydroxymethyl ketones. Tetrahedron 200258, 7321-7326. DOI Link

Kanger, T.; Kriis, K.; Pehk, T.; Müürisepp, A.-M.; Lopp, M. Asymmetric synthesis of novel C2-symmetric bimorpholines. Tetrahedron: Asymmetry 200213, 857-865. DOI Link

Paju, A.; Kanger, T.; Pehk, T.; Lopp, M. Asymmetric oxidation of 1,2-cyclopentanediones. Tetrahedron Lett200041, 6883-6887. DOI Link

Aav, R.; Kanger, T.; Pehk, T.; Lopp, M. Synthesis of the AB-ring of 9,11-secosterols. Synlett 2000, 529-531. DOI Link

Alexakis, A.; Aujard, I.; Kanger, T.; Mangeney, P. (R,R)- and (S,S)-N,N'-dimethyl-1,2-diphenylethylene-1,2-diamine. Org. Synth. 199976, 23-34. DOI Link

Rose-Munch, F.; Gagliardini, V.; Perrotey, A.; Tranchier, J.-P.; Rose, E.; Mangeney, P.; Alexakis, A.; Kanger, T.; Vaissermann, J. Two-step synthesis of homochiral monoaminals of tricarbonylphthalaldehydechromium complex. Chem. Commun. 1999, 2061-2062. DOI Link

Kanger, T.; Kriis, K.; Paju, A.; Pehk, T.; Lopp, M. Asymmetric oxidation of cyclobutanones: Modification of the sharpless catalyst. Tetrahedron: Asymmetry 19989, 4475-4482. DOI Link

Kanger, T.; Niidas, P.; Müürisepp, A.-M.; Pehk, T.; Lopp, M. Synthesis of chiral epoxyalkynes. Tetrahedron: Asymmetry 1998, 9, 2499-2508. DOI Link

Lopp, M.; Paju, A.; Kanger, T.; Pehk, T. Direct asymmetric α-hydroxylation of β-hydroxyketones. Tetrahedron Lett199738, 5051-5054. DOI Link

Lopp, M.; Paju, A.; Kanger, T.; Pehk, T. Asymmetric Bayer-Villiger oxidation of cyclobutanones. Tetrahedron Lett199637, 7583-7586. DOI Link

Kobzar, G.; Mardla, V.; Kanger, R.; Lopp, M.; Lille, U. Comparison of the Anti-Aggregatory activity of enantiomers of a 15-non-stereogenic carbacyclin analogue MIM706. Pharmacol. Toxicol199576, 297-298. DOI Link

Alexakis, A.; Kanger, T.; Mangeney, P.; Rose-Munch, F.; Perrotey, A.; Rose, E. Enantioselective ortho-lithiation of benzaldehyde chromiumtricarbonyl complex. Tetrahedron: Asymmetry 19956, 2135-2138. DOI link

Alexakis, A.; Kanger, T.; Mangeney, P.; Rose-Munch, F.; Perrotey, A.; Rose, E. Enantioselective ortho-Lithiation of Aminals of benzaldehyde chromiumtricarbonyl complex. Tetrahedron: Asymmetry 19956, 47-50. DOI link

Kobzar, G.; Shelkovnikov, S.; Mardla, V.; Savitski, G.; Lopp, M.; Kanger, T.; Lille, U. A 15-nonstereogenic carbocyclic analogue of prostacyclin: Effects on human platelets and uterine artery. J. Lipid Mediat. Cell Sign. 199410, 243-249. Link

Kanger, T.; Liiv, M.; Pehk, T.; Lopp, M. A highly stereoselective synthesis of a new propargylic epoxide: (3R,4S)-1-tert-butyldimethylsilyl-3,4-epoxy-1-pentyne. Synthesis 1993, 91-93. DOI Link

Kanger, T.; Lopp, M.; Muraus, A.; Lohmus, M.; Kobzar, G.; Pehk, T.; Lille, U. Synthesis of a novel, optically active 15-nonstereogenic carbaprostacyclin. Synthesis 1992, 925-927. DOI Link

Lopp, M.; Kanger, T.; Miiraus, A.; Pehka, T.; Lille, Ü. Synthesis of a novel four-carbon chiron - (R)-1-t-butyldimethylsilyl-3,4-epoxy-but-1-yne. Tetrahedron: Asymmetry 1991, 2, 943-944. DOI Link

Kanger, T.; Lopp.; Lille, Ü. Reactions of oxiranes. 2. Effect of protective groups on regioselectivity of oxirane opening in 2,3-epoxybicyclo[3.2.0]heptan-6-ones by lithium alkynide in the presence of boron-trifluoride. Zh. Org. Khim199127, 1693-1700.

Kanger, T.; Kabat, M, Viha, E.; Lopp, M.; Lille, Ü. Optically-active synthons for synthesis of prostanoids. 1. Separation of 2-exo-bromine-3-endo-hydroxybicyclo[3.2.0]heptan-6-one enantiomers. Zh. Org. Khim199026, 1611-1714.

Lopp, M.; Paju, A.; Kanger, T.; Välimäe, T.; Lille, Ü. Alkynylation of ethylene ketal of 1-chloro-4-bromo-1E-buten-3-one - synthesis of enyne and diene fragments of leukotriene and pheromones. Zh. Org. Khim198925, 869-870.

Kanger, T.; Lopp, M.; Lille, Ü. Reactions of Oxiranes. 1. Role of Boron-Trifluoride in alkynation of bicyclic oxiranes. Zh. Org. Khim. 198824, 2543-2546.

Pihl, L.; Kanger, T.; Talvik, A. Kinetic study of ionization of nitroalkanes in mixed solvents. 9. Phenylnitromethane and phenylnitromethane-d2 in aqueous dimethylsulfoxide and aqeous dimethylformamide. Org. React. 198421, 436-440.

Cocatalysis

Our research group is dedicated to pushing the boundaries of chemical reactivity, with a profound commitment to environmental stewardship and sustainability. The central challenge we address is the development of environmentally benign methods for synthesizing complex compounds, particularly those requiring enantioselectivity. Our focus is on leveraging asymmetric organocatalysis, a field that employs renewable and less toxic small organic molecules as catalysts, in lieu of traditional transition metals. Asymmetric organocatalysis and particularly cocatalysis, with its adherence to green chemistry principles, emerges as a beacon of future technology, promising advancements that prioritize safety, efficiency, and minimal environmental impact. In an era where the demand for new chemicals, particularly in the pharmaceutical industry, is ever-growing, we strive to reduce waste, energy consumption, and environmental impact. By harnessing the synergistic effects of different catalysts, we recognize the priority to develop innovative processes that not only meet societal needs but also align with the imperative goals of sustainable chemistry.

GROUP WEBSITE

members

Dr. Mikk Kaasik - group leader
Dr. Aleksandra Murre - researcher

kokatalüüs

10. Kaasik, M.; Chen, P.-P.; Ričko, S.; Jørgensen, K. A.; Houk, K. N. Asymmetric [4 + 2], [6 + 2], and [6 + 4] Cycloadditions of Isomeric Formyl Cycloheptatrienes Catalyzed by a Chiral Diamine Catalyst. Journal of the American Chemical Society, 2023, 145, 23874−23890.
https://doi.org/10.1021/jacs.3c09551

9. Ričko, S.; Bitsch, R. S.; Kaasik, M.; Otevřel, J.; Højgaard Madsen, M.; Keimer, A.; Jørgensen, K. A. Enantioconvergent 6π Electrocyclization Enabled by Photoredox Racemization. Journal of the American Chemical Society 2023, 145, 20913−20926.
https://doi.org/10.1021/jacs.3c06227

8. Kriis, K.; Martõnov, H.; Miller, A.; Erkman, K.; Järving, I.; Kaasik, M.; Kanger, T. Multifunctional Catalysts in the Asymmetric Mannich Reaction of Malononitrile with N-Phosphinoylimines: Coactivation by Halogen Bonding versus Hydrogen Bonding. Journal of Organic Chemistry 2022, 87 (11), 7422−7435.
https://doi.org/10.1021/acs.joc.2c00674

7. Kaasik, M.; Martõnova, J.; Erkman, K,: Metsala, A.; Järving, I.; Kanger, T. Enantioselective Michael addition to vinyl phosphonates via hydrogen bond-enhanced halogen bond catalysis. Chemical Science 2021, 12, 7561-7568.
https://doi.org/10.1039/D1SC01029H

6. Kaasik, M.; Kanger, T. Supramolecular Halogen Bonds in Asymmetric Catalysis. Frontiers in Chemistry 2020, 8, 599064.
https://doi.org/10.3389/fchem.2020.599064

5. Kaasik, M.; Metsala, A.; Kaabel, S.; Kriis, K.; Järving, I.; Kanger, T. Halo-1,2,3-triazolium Salts as Halogen Bond Donors for the Activation of Imines in Dihydropyridinone Synthesis. Journal of Organic Chemistry 2019, 84, 4294−4303.
https://doi.org/10.1021/acs.joc.9b00248

4. Kaasik, M.; Kaabel, S.; Kriis, K.; Järving, I.; Kanger, T. Synthesis of Chiral Triazole-Based Halogen Bond Donors. Synthesis 2019, 51, 2128-2135.
https://doi.org/10.1055/s-0037-1610864

3. Peterson, A.; Kaasik, M.; Metsala, A.; Järving, I.; Adamson, J.; Kanger, T. Tunable chiral triazole-based halogen bond donors: assessment of donor strength in solution with nitrogen-containing acceptors. RSC Advances 2019, 9, 11718−11721.
https://doi.org/10.1039/C9RA01692A

2.  Kaasik, M.; Kaabel, S.; Kriis, K.; Järving, I.; Aav, R.; Rissanen, K.; Kanger, T. Synthesis and Characterisation of Chiral Triazole-Based Halogen-Bond Donors: Halogen Bonds in the Solid State and in Solution. Chemistry - A European Journal 2017, 23, 7337−7344.
https://doi.org/10.1002/chem.201700618

1. Kaasik, M.; Noole, A.; Reitel, K.; Järving, I.; Kanger, T. Organocatalytic Conjugate Addition of Cyclopropylacetaldehyde Derivatives to Nitro Olefins: en Route to β- and γ-Amino Acids. European Journal of Organic Chemistry 2015, 8, 1745−1753.
https://doi.org/10.1002/ejoc.201403387

Computational Chemistry

Computational chemistry utilizes methods based on quantum physics and molecular mechanics in order to model chemically relevant systems and processes. In our research group we are using mainly density functional theory-based models for studying of reaction mechanisms and molecular structure. Our competencies include modelling of inorganic coordination compounds and weakly bound complexes. Recently we have added molecular mechanics, machine learning and computational fluid dynamics to our arsenal. We utilize a variety of computational chemistry software, eg Gaussian, Orca, Turbomole, CP2K, Amber, Gromacs, etc. In addition to an in-group compute cluster we have access to the ETAIS computing clusters, some of which are located on campus.

We have developed descriptions of molecular systems for machine learning models, which are invariant relative to molecular rotations as well as re-numbering of the atoms. The linearized moment tensor potential model has demonstrated high accuracy, rivalling that of the most accurate coupled-cluster quantum chemical models with a computational cost that is lower by several orders of magnitude.

In collaboration with the supramolecular chemistry group we have studied a class of container molecules known as hemicucurbiturils, more specifically the cyclohexano variety of these. Finished projects include binding of neutral and ionic guests, template-based formation of the host molecule, and mechanisms of the synthesis reactions.

Combination of machine learning, quantum mechanics and molecular mechanics methods is showing promising results in accurate mapping of potential energy surfaces of large inorganic catalyst complexes, which are too large to be studied by standard density functional theory techniques. These developments afford new approaches to studies of mechanisms of catalytic reactions.

Head of the group: Toomas Tamm

PhD students: Aleksandra Zahharova, Hanna-Eliisa Luts, Arian Lopušanski, Işılay Öztürk.

Industrial Chemistry Laboratory

Technological further developing the use of oil shale is strategically important for Estonia both socially and economically. Due to the overproduction of oil in the world and the low oil prices, the establishment of an additional shale oil production plant is currently not reasonable and oil production will continue to depend on the price of oil on the world market, which is not stable.

The oil shale research group deals with the valorization of oil shale by its direct degradation to dicarboxylic acids (DCA) and their derivatives, which in turn are raw materials or components of polymers, paints, lubricants, construction chemical products (polyurethanes and construction foams) and many other special materials. At the market price, DCA is ~ 5-100 times more expensive than shale oil, but the products made from it are even more expensive.

Two new methods of chemical decomposition of oil shale – air oxidation (WAO) and nitric acid oxidation were studied within the project “New technological platform for oil shale kerogen enhancement: partial oxidation and further conversion to valuable dicarboxylic acid derivatives” (Smart Specialization Program). Oxidation with both WAO and nitric acid produces dicarboxylic acids from oil shale and its concentrates.

Currently, the work continues in the framework of the Smart Specialization Program. The aim of the project “Technological Platform for Processing Oil Shale Kerogen into Dicarboxylic Acids” is to promote the new oil shale processing technology and to identify product development opportunities. The project consists of two parts: research, which explores different possibilities for creating a continuous-flow technology, and the second part, which involves product development based on the first result.

GROUP WEBPAGE   INSTAGRAM

Margus Lopp, professor, head research scientist
Jaan Mihkel Uustalu, PhD, chief officer
Kristiina Kaldas, PhD, senior reseacher
Tiina Kontson, PhD, chief officer
Andres Siirde, PhD, chief officer
Birgit Mets, PhD, senior reseacher
Estelle Silm, PhD, chief officer
Kati Muldma, engineer
Simm Aia, engineer
Galina Varlamova, PhD, project assistant
Villem Ödner Koern, engineer

Põlevkivi

Instrumental Analysis

The research group of instrumental analysis solves important societal problems by developing and applying modern analytical methods using instrumentation like gas and liquid chromatography, capillary electrophoresis, spectroscopy, mass spectrometry, etc. There are many areas of research that we are involved in, like identification of prohibited substances, food and environmental safety, bioactive compounds in food and medicinal plants, micro- and macroelements in food and other natural sources. An important part of this research is the development of novel extraction methods in accordance with the principles of green analytical chemistry utilizing environmentally friendly solvents (deep eutectic solvents, ionic liquids, supercritical fluids). Our research is focused on the isolation and analysis of plant phytochemicals, including the determination of their antioxidative, antibacterial, and anticancer activities. Our aim is to find novel lead compounds active against multidrug-resistant bacteria and/or Borrelia burgdorferi, the causative agent of Lyme disease, both of which are causes for global health concerns. Additionally, we work on the development of different novel materials like aerogels that are used as adsorbents, drug carriers, and catalysts in electrochemistry and water purification.

We welcome students of all levels to join our group!
If interested, please contact our group leader: Merike Vaher, merike.vaher@taltech.ee.

Group webpage

instru23

Members:

Merike Vaher, Leading Research Scientist, Group Leader
Mihkel Kaljurand, Professor Emeritus
Mihkel Koel, Leading Research Scientist
Piia Jõul, Research Scientist
Olga Bragina, Research Scientist
Martin Růžička, Postdoctoral Researcher
Piret Saar-Reismaa, Postdoctoral Researcher
Pille-Riin Laanet, Ph Student-Early Stage Researcher
Kristin Düüna, Master’s Student
Regina Drošnova, Master’s Student
Annabel Taniel, Bachelor’s Student
Iris-Gertrud Jussila, Bachelor’s Student
Irina Petrova, Bachelor’s Student
Eva-Liisa Tiru, Bachelor’s Student
Emma-Victoria Talvik, Bachelor’s Student
Maian Reinkubjas, Bachelor’s Student
Karoliin Remmelg, Bachelor’s Student
Paul Mitt, Bachelor’s Student

Laanet, P.-R.; Saar-Reismaa, P.; Jõul, P.; Bragina, O.; Vaher, M. Phytochemical Screening and Antioxidant Activity of Selected Estonian Galium Species. Molecules 2023, 28, 2867. https://doi.org/10.3390/molecules28062867

Saar-Reismaa, P.; Bragina, O.; Kuhtinskaja, M.; Reile, I.; Laanet, P.-R.; Kulp, M.; Vaher, M. Extraction and Fractionation of Bioactives from Dipsacus fullonum L. Leaves and Evaluation of Their Anti-Borrelia Activity. Pharmaceuticals 2022, 15, 87. https://doi.org/10.3390/ph15010087

Ruzicka, M.; Kaljurand, M.; Gorbatšova, J.; Vaher, M.; Mazina-Šinkar, J. Portable fully automated oral fluid extraction device for illegal drugs. Talanta 2022, 243, 1675. https://doi.org/10.1016/j.talanta.2022.123389

Laanet, P.-R.; Vaher, M.; Saar-Reismaa, P. Micellar electrokinetic chromatography method for the analysis of synthetic and phytocannabinoids. Journal of Chromatography A, 1673, #463080. https://doi.org/10.1016/j.chroma.2022.463080

Saar-Reismaa, P.; Koel, M.; Tarto, R.; Vaher, M. Extraction of bioactive compounds from Dipsacus fullonum leaves using deep eutectic solvents. Journal of Chromatography A 2022, 1677, #463330 http://dx.doi.org/10.1016/j.chroma.2022.463330

Jõul, P.; Vaher, M.; Kuhtinskaja, M. Carbon aerogel-based solid-phase microextraction coating for the analysis of organophosphorus pesticides. Analytical Methods 2021, 13, 69−76. https://doi.org/10.1039/D0AY02002H

Saar-Reismaa, P.; Kotkas, K.; Rosenberg, V.; Kulp, M.; Kuhtinskaja, M.; Vaher, M. Analysis of Total Phenols, Sugars, and Mineral Elements in Colored Tubers of Solanum tuberosum L. Foods 2020, 9, 1862. http://doi.org/10.3390/foods9121862

Saar-Reismaa, P.; Brilla, C.-A.; Leiman, K.; Kaljurand, M.; Vaher, M.; Kulp, M.; Mazina-Šinkar, J. Use of a newly-developed portable capillary electrophoresis analyser to detect drugs of abuse in oral fluid: a case study. Talanta 2020, 211, 120662. https://doi.org/10.1016/j.talanta.2019.120662

Lees, H.; Jõul, P.; Siilak, K.; Vaher, M. Separation of perfluoroalkyl substances by using nonaqueous capillary electrophoresis with conductivity detection. Separation Science Plus 2020, 3 (7), 313−320. http://dx.doi.org/10.1002/sscp.202000016

Kuhtinskaja, M.; Bragina, O.; Kulp, M.; Vaher, M. Anticancer effect of the iridoid glycoside fraction from Dipsacus fullonum L. leaves. Natural Product Communications 2020, 15. https://doi.org/10.3390/ph15010087.

Koel, M.; Kuhtinskaja, M.; Vaher, M. Extraction of bioactive compounds from Catharanthus roseus and Vinca minor. Separation and Purification Technology 2020, 252, #117438. http://doi.org/10.1016/j.seppur.2020.117438

Saar-Reismaa, P.; Tretjakova, A.; Mazina-Šinkar, J.; Vaher, M.; Kaljurand, M.; Kulp, M. Rapid and sensitive capillary electrophoresis method for the analysis of Ecstasy in an oral fluid. Talanta 2019, 197, 390-396. https://doi.org/10.1016/j.talanta.2019.01.029.

Jõul, P.; Vaher, M.; Kuhtinskaja, M. Evaluation of carbon aerogel-based solid-phase extraction sorbent for the analysis of sulfur mustard degradation products in environmental water samples. Chemosphere 2018, 198, 460−468. http://dx.doi.org/10.1016/j.chemosphere.2018.01.157

Lees, H.; Zapata, F.; Vaher, M.; García-Ruiz, C. Simple multispectral imaging approach for determining the transfer of explosive residues in consecutive fingerprints. Talanta 2018, 184, 437−445. http://dx.doi.org/10.1016/j.talanta.2018.02.079

Saar-Reismaa, P.; Erme, E.; Vaher, M.; Kulp, M.; Kaljurand, M.; Mazina-Šinkar, J. In situ Determination of Illegal Drugs in Oral Fluid by Portable Capillary Electrophoresis with Deep UV Excited Fluorescence Detection. Analytical Chemistry 2018, 90 (10), 6253−6258. http://dx.doi.org/10.1021/acs.analchem.8b00911.

Aid, T.; Koel, M.; Lopp, M.; Vaher, M. Metal-Catalyzed Degradation of Cellulose in Ionic Liquid Media. Inorganics 2018, 78 (6), 1−11. http://doi.org/10.3390/inorganics6030078

Jõul, P.; Kuhtinskaja, M.; Vaher, M.; Koel, M. Green Chemistry and reconsidering simple analytical methods. Chimica Oggi-Chemistry Today 2017, 35 (2), 49−51. https://www.teknoscienze.com/Contents/Riviste/Sfogliatore/CO2_2017/50/index.html

Saar-Reismaa, P.; Kulp, M.; Vaher, M.; Kaljurand, M.; Mazina-Šinkar, J. Simultaneous determination of γ-hydroxybutyric acid, ibotenic acid and psilocybin in saliva samples by capillary electrophoresis coupled with a contactless conductivity detector. Analytical Methods 2017, 9, 3128−3133. http://doi.org/10.1039/C7AY00742F

Aid, T.; Paist, L.; Lopp, M.; Kaljurand, M.; Vaher, M. An optimized capillary electrophoresis method for the simultaneous analysis of biomass degradation products in ionic liquid containing samples. Journal of Chromatography A 2016, 1447, 141−147. http://dx.doi.org/10.1016/j.chroma.2016.04.027

Aid, T.; Hyvärinen, S.; Vaher, M.; Koel, M.; Mikkola, J.-P. Saccharification of lignocellulosic biomasses via ionic liquid pretreatment. Industrial Crops and Products 2016, 92, 336−341. http://dx.doi.org/10.1016/j.indcrop.2016.08.017

Gorbatsova, J.; Jaanus, M.; Vaher, M.; Kaljurand, M. Digital microfluidics platform for interfacing solid-liquid extraction column with portable capillary electropherograph for analysis of soil amino acids. Electrophoresis 2016, 37 (3), 472−475. http://dx.doi.org/10.1002/elps.201500284

Aid, T.; Kaljurand, M.; Vaher, M. Colorimetric Determination of Total Phenolic Content in Ionic Liquid Extracts by Paper Microzones and Digital Camera. Analytical Methods 2015, 7, 3193−3199.

http://dx.doi.org/10.1039/c5ay00194c

Mazina, J.; Vaher, M.; Kuhtinskaja, M.; Poryvkina, L.; Kaljurand, M. Fluorescence, electrophoretic and chromatographic fingerprints of herbal medicines and their comparative chemometric analysis. Talanta 2015, 139, 233−246. http://dx.doi.org/10.1016/j.talanta.2015.02.050

Mazina, J.; Saar-Reismaa, P.; Kulp, M.; Poryvkina, L.; Kaljurand, M.; Vaher, M. Determination of γ-hydroxybutyric acid in saliva by capillary electrophoresis coupled with contactless conductivity and indirect UV absorbance detectors. Electrophoresis 2015, 36, 3042−3049. DOI: 10.1002/elps.201500293.

https://doi.org/10.1002/elps.201500293

Supramolecular Chemistry

Supramolecular Chemistry research group is studying intermolecular chemistry, encompassing methods of analytical, organic, and physical chemistry. We are engaged in the development of efficient and environmentally friendly synthetic methods and use them for the preparation of macrocyclic receptor molecules (such as hemicucurbiturils). Development on new mechanochemical synthesis methods is therefore in focus of our interest. Mechanochemistry allows reactions to be performed faster than in dilute solvents and helps to reduce the carbon footprint of chemical processes by avoiding organic solvents. We are studying the formation, structure and properties of nanometer sized macrocyclic molecules. Also, we look for their ability to form complexes and therefore we are routinely applying various quantitative and qualitative analysis methods. We are engaged in the creation of selective receptor molecules that could act as chemosensors for determination of analytes and pollutants, as well as selective absorbents. Since the building blocks of nature are chiral, we focus on chiral molecules. We also study the induction of chirality to molecules giving strong optical signal in low energy regon (e.g., metalloporphyrins). Selective host molecules like macrocycles are useful for development of sensors, sorbents, and regulators of activity of biomolecules.
We routinely perform analysis on following instrumentation (HPLC-UV, HPLC-MS, HRMS, NMR, UV-Vis, IR, FS, SC-XRD). In addition, we analyze the properties of chiral substances by circular dichroism (CD) and vibrational circular dichroism (VCD) spectroscopies.
If you are interested in doing an internship, dissertation or research in our group, please contact the head of the research group Professor Riina Aav (riina.aav@taltech.ee), see also our group page:

GROUP WEBSITE 

Group members: Dr. Dzmitry Kananovich, Dr. Victor Borovkov, Dr. Lukaš Ustrnul, Dr. Karin Valmsen, Dr. Marina Kudrjašova, Dr. Elena Prigorchenko (maternity leave), Nele Konrad, Tatsiana Nikonovich, Tatsiana Jarg, Mari-Liis Brük, Jevgenija Martõnova, Marko Šakarašvili, Kristjan Siilak, Jagadeesh Varma, Elina Suut-Tuule, Rauno Reitalu.

Supramol.gr

1. Dalidovich, T.; Mishra, K. A.; Shalima, T.; Kudrjasova, M.; Kananovich, D. G.; Aav, R. Mechanochemical Synthesis of Amides with Uronium-Based Coupling Reagents: A Method for Hexa-amidation of Biotin[6]uril. ACS Sustainable Chemistry & Engineering, 2020, 8 (41), 15703-15715. DOI: 10.1021/acssuschemeng.0c05558.

2. Mishra, K.; Adamson, J.; Öeren, M.;  Kaabel, S.; Fomitšenko, M.; Aav, R. Dynamic chiral cyclohexanohemicucurbit[12]uril, Chemical Communications, 2020, 56, 14645-14648 , DOI: 10.1039/D0CC06817A 

3. Kaabel, S.; Stein, R. S.; Fomitsenko, M. Jarving, I.; Friscic, T.; Aav, R. Size-Control by Anion Templating in Mechanochemical Synthesis of Hemicucurbiturils in the Solid State. Angewandte Chemie International Edition. 2019, 58, (19) 6230-6234. DOI: 10.1002/ anie.201813431Featured on cover 

4. Ustrnul, L.; Kaabel, S.; Burankova, T.; Martõnova, J.; Adamson, J.; Konrad, N.; Burk, P.; Borovkov, V.; Aav, R. Supramolecular chirogenesis in zinc porphyrins by enantiopure hemicucurbit[n]urils (n = 6, 8) Chemical Communications, 2019, 55, 14434-14437, DOI: 10.1039/C9CC07150D

5. Kaabel, S.; Adamson, J.; Topic, F.; Kiesila, A.; Kalenius, E.; Oeren, M.; Reimund, M.; Prigorchenko, E.; Lookene, A.; Reich, H. J.; Rissanen, K.; Aav, R. Chiral hemicucurbit[8]uril as an anion receptor: selectivity to size, shape and charge distribution. Chemical Science, 2017, 8 (3), 2184-2190. DOI: 10.1039/C6SC05058A.

Sustainable Chemistry and Engineering

Keywords: Green & Sustainable Chemistry, Functional surfactant self-assembly, Antiviral/ antibacterial formulations, Biodegradability, Biomass valorization, Medicinal chemistry, Chemical decontamination.

Our research activities are focused on designing novel, efficient, safe, and more environmentally benign chemicals and formulations. We target organic chemistry transformations in accordance with the principles of sustainability and green chemistry.
 - Organic chemistry application includes development of cleaner organic synthesis methods to obtains small molecules and functional materials for biomedical or environmental applications. 
Medicinal chemistry research includes rational design of antidotes (reactivators of AChE inhibited by OP) and potential anticancer agents (VEGFR and PARP inhibitors). Innovative formulations for drug delivery involve functionalized nanodiamonds and sustainable micro/nanoemulsions.
 - Biodegradability facility (OECD 301D CBT) has been installed and used by the team to identify low toxicity or mineralizable transformation products, targeting “benign-by-design” approach.
Biomass valorisation is resulted in lignin-based surfactants. The novel formulations (micelles, gels, films, or emulsions) are studeid to have tunable antibacterial or antiviral activity. 
 - Risk management of technogenic accidents includes improvement of (i) antidotal and decontamination formulations for sustainability kits needed for the first responders and volunteers; (ii) disinfectant formulations, which remain at the surface and inactivate bacteria or viruses.
Students of all levels are involved in our research work, including regular traineeships of the international students on individual basis and within networking projects. 

PI: Yevgen Karpichev, PhD, Senior Research Scientist (Email: yevgen.karpichev@taltech.ee )

Group members: Denys Bondar (early-stage researcher/ PhD student), Nandish K. Nagappa (PhD student), Oleg Silenko (early-stage researcher/visiting PhD student), Ella Duvanova (Dora Pluss visiting PhD student), Michael Astorga (DAAD trainee), Munkhtuul Enkhbat (DAAD trainee)

Sustainable chemistry

KIK

KIK21045 “Uute energiamaterjalide arendamine ringmajanduse tehnoloogiate jaoks’ / “Novel energy materials for circular economy technologies” (01.07.2021–01.09.2023)

Contact: Yevgen Karpichev 

 The project achieved significant results in various aspects of the circular economy:

  1. Developed materials with a high Chemical Element Sustainability Index in the context of the circular economy. This includes the creation of a Bi-containing metal-organic material and the successful demonstration of CO2 conversion into high-demand chemicals like formate and formic acid using a novel electrocatalyst. This involved preparation, optimization of catalytic performance and selectivity, enhanced CO2 electroreduction, and scaling up for a CO2 capture pilot setup.
  2.  Improved the performance of Zn-air batteries, which offer a potentially cheaper and safer alternative to lithium-ion batteries, by incorporating non-critical elements as mineral additives, thereby enhancing the valorization of mineral resources.
  3.  Explored the extraction of rare-earth metals and water treatment using Metal-Organic Frameworks (MOF) as prospective adsorbents. This research focused on optimizing the composition and porosity of MOFs, assessing their performance, regeneration, and reusability in the context of rare-earth metal extraction and water treatment.

 Collaboration on this project was conducted in partnership with Prof. Nadezda Kongi from Institute of Chemistry, University of Tartu (www.kongilab.com).

KIK

 In memory of Pavel Starkov, our colleague and friend

pav

1.    Banjare, M. K.; Kamalakanta, B.; Banjare, R. K.; Pandey, S.; Ghosh, K. K.; Karpichev, Y. Molecular Interactions between Novel Synthesized Biodegradable Ionic Liquids with Antidepressant Drug. Chem. Thermodyn. Therm. Anal., 2021 (3-4), 100012.  https://doi.org/10.1016/j.ctta.2021.100012

2.    Trybrat, O. O.; Yesypenko, O. A.; Shishkina, S. V.; Rusanov, E. B.; Karpichev, Y.; Kalchenko, V. I. (2021). 25-Propyloxy-26,27-dibenzoyloxy-calix[4]arene as Precursor for the Synthesis of Inherently Chiral Calixarenes. Eur. J. Org. Chem., 2021 (28), 3912−3919. DOI: https://doi.org/10.1002/ejoc.202100624

3.    Usmani, Z.; Sharma, M.; Karpichev, Y.; Pandey, A.; Kuhad, R.Ch.; Bhat, R.; Poonia, R.; Aghbashlo, M.; Tabatabaei, M.; Gupta, V. K. Advancement in valorization technologies to improve utilization of bio-based waste in bioeconomy context. Renew. Sustain. Energy Rev., 2020 (131), 109965. https://doi.org/10.1016/j.rser.2020.109965 .

4.     Velihina, Ye.; Scattolin,Th.; Bondar, D.; Pil'o, S.; Obernikhina, N.; Kachkovskyi, O.; Semenyuta, I.; Caligiuri, I.; Rizzolio, F.; Brovarets, V.; Karpichev, Y.; Nolan S. P. Synthesis, In silico and In vitro Evaluation of Novel Oxazolopyrimidines as Promising Anticancer Agents. Helv. Chim. Acta, 2020, 103 (12), #e2000169. https://doi.org/10.1002/hlca.202000169

5.     Usmani, Z.; Sharma, M.; Gupta, P.; Karpichev, Y.; Gathergood, N.; Bhat, Rajeev; Gupta, V. K. Ionic liquid based pretreatment of lignocellulosic biomass for enhanced bioconversion. Bioresour. Technol., 2020 (304), 123003. https://doi.org/10.1016/j.biortech.2020.123003

6.    Suk, M.; Haiß, A.; Westphal, J.; Jordan, A.; Kellett, A.; Kapitanov, I.V.; Karpichev, Y.; Gathergood, N.; Kümmerer, K. Design rules for environmental biodegradability of phenylalanine alkyl ester linked ionic liquids. Green Chem., 2020 (22), 4498−4508. https://doi.org/10.1039/D0GC00918K

7.     Pandya, S.; Kapitanov, I. V.; Usmani, Z.; Sahua, R.; Sinha, D.; Gathergood, N.; Ghosh, K. K.; Karpichev, Y. An Example of Green Surfactant Systems Based on Inherently Biodegradable IL-derived Amphiphilic Oximes. J. Mol. Liquids, 2020 (305), 112857. https://doi.org/10.1016/j.molliq.2020.112857

Synthetic Flow Chemistry Group

The research in the group is focused on the development of new electro- and photochemical transformation in continuous-flow. Our research is multidisciplinary, as we combine modern organic synthesis techniques with chemical engineering in order to achieve high efficiency and sustainability. In electro- and photochemical reactions, electricity or light are used as traceless and green reagents to generate highly reactive species under mild reaction conditions, which gives access to the new reaction pathways. Moreover, the potential to harvest sustainable electricity from solar or wind energy and using daylight directly to perform reactions makes electro- and photochemistry highly attractive. In our group, we perform such transformation not in conventional chemical flask or test tubes, but in specially designed flow photo- and electromicroreactors, where solution of chemicals is continuously pumped through the active reactor zone. Due to the continuous nature of the process, such transformations are easy to scale up merging the gap between academia and chemical industry.

  • Dr. Maksim Ošeka (Principal Investigator)
  • Anastasiya Krech (PhD Student)
  • Anni Kooli (Visiting PhD Student)

Group website

Twitter
 

Flow Chemistry

Wood Chemistry

The core laboratory of wood chemistry and biomass valorization technologies unites the laboratories of instrumental analysis, structural biology and lignin biochemistry and the laboratory of sustainable chemistry and technologies under one umbrella with topics related to the development of technologies and strategies for wood and plant biomass valorization. The external collaborative partners of the core lab are Tartu University, Estonian University of Life Sciences as well as the National Institute of Chemical Physics and Biophysics. Additionally, the core group actively collaborates with the Department of Materials and Environmental Technology (Prof. Krumme and Prof. Kers). The research activities of the core lab are coordinated by Dr. Tiit Lukk.

GROUP WEBSITE

Puidukeemia

The core laboratory of wood chemistry and biomass valorization technologies carries out interdisciplinary work in the following research areas:

Fractionation and analytical chemistry of wood polymers: 
Dr. Maria Kulp – group leader
Evelin Solomina 
Tran Ho
Olivia-Stella Salm 
Violetta Umerenkova
Alisia Teras
Karl Romek Staškevitš

Functional materials from wood polymers:
Dr. Mihkel Koel ja Dr. Yevgen Karpichev – group leaders 
Dr. Piia Jõul 
Mahendra Kothottil Mohan
Jose Morales 
Daniel Sööt

Biochemical valorization of biomass
Dr. Tiit Lukk – group leader
Dr. Eve-Ly Ojangu 
Dr. Kairit Zovo 
Hegne Pupart 
Kannan Thirumalmuthu
Maarja Lipp
Marcel Mäger
Ander Erik
Epp Väli

Valorization of secondary biomass sources
Dr. Maria Kuhtinskaja ja Dr. Merike Vaher – group leaders 
Dr. Tiit Lukk 
Marlen Leemet 
Annabel Taniel

Funding
MOBTT60 - The role of actinomycete metalloproteins in lignin depolymerization and soil chemistry
RESTA11 - Development of chemical and biochemical valorization technologies for bleached chemithermomechanical pulps (BCTMP) and secondary woody biomass sources.
KIK21023 - Development of technologies for the valorization of mandarin pomace waste with the goal of alleviating the environmental impact of Georgian fruit juice industry while utilizing the principles of circular economy