Tallinn University of Technology

3D printing

Services:

Printing of white plastic parts using Selective Laser Sintering technology
Maximum dimensions: 190 x 230 x 315 mm
Material: polyamide PA2200 (PA12)

The process:

  • The geometry is based on 3D CAD model, imported into the system in STL-model.
  • This is additive process, i.e. the part is made by adding material, layer by layer.
  • Plastic powder is used; the particles are sintered by laser to form a dense part.
  • The parts are fully functional and can be used for prototypes and small series production.


Contact:
Alar Niidas
Phone +372 55 54 69 68
Alar.Niidas@taltech.ee

printer

Selective laser sintering system Formiga P100.

The process is described in the figure 1. The building of the parts takes place in the building chamber. The chamber has elevated temperature and shielding gas is used (nitrogen). At the beginning the insulation layer of powder is applied onto the building platform. Then, a building layer (0,1 mm) of the material is applied by the recoater. Then the cross section of the part is sintered by the laser beam. New layer of fresh powder is applied and the sintering process is repeated until the building of the part is completed. 

EM_sls

Figure 1. Laser sintering working principle schematic.

At the end of the process the parts produced are surrounded and supported by loose powder, so building of support structures is not needed. It is also possible to produce many parts together. The main advantage is large design freedom – almost no geometry limitations exist. For example it is possible to produce moving joints and combine multiple parts together for compact design solution.

The advantages of the technology are as follows:

  • Almost no geometry limits
  • Thin walled structures can be manufactured (minimum wall thickness is 0,5 mm)
  • The wall thickness may vary in large extent in different areas of the part
  • Process is highly automated, no special tools are needed
  • Fast process
pritner3

Example: Technology is especially suited for manufacturing electronic equipment casings

printer4

Example: Geometrical limitation are almost non-existent

printer5

Example: Moving parts can be manufactured without the need for assembly

Contact:
Phone +372 620 3252
Alar.Niidas@taltech.ee

3D printer,  SLM 280 2.0 services: 

Name of the machine: Selective laser melting machine SLM 280 2.0
Type of the machine: synthesis of the materials, metal part production and prototypes printer
Location: Tallinn Univeristy of Technology, U05B-103, Rapidlab
Restrictions: dimensions of the product, complexity of the product, access to use the machine
Tags: 3D printer, selective laser melting, 3D model, metal printer, 3D printing, synthesis of the materials
 
SLM Solutions SLM 280 3D printer
Manufacturer: SLM Solutions
Model: SLM 280 2.0
Functioning principle: selective laser melting
Dimensions of the machine: (L)2600mm * (D)1200 mm * (H)2700 mm
Working area: (maximum dimensions of the product): 280 mm * 280 mm * 365 mm, reduced by the substrate plate thickness
Printable materials: stainless steel, Al, Ag, Ti (Fe, Al, Co, Ti based alloys)
Laser: single optics 700 W
The Selective Laser Melting Machine SLM 280 2.0 provides a 280 x 280 x 365 mm³ build envelope and a patented multi-beam technology.

Contact:
Alar Niidas
Phone +372 55 54 69 68
Alar.Niidas@taltech.ee

Printer SLM 280 2.0:

pritner6

3D printer, Realizer SLM-50 services: 

Name of the machine: 3D printer- laser sintering machine
Type of the machine: synthesis of the materials
Location: Tallinn Univeristy of Technology, U06-110
Restrictions: dimensions of the product, complexity of the product, access to use the machine
Tags: 3D printer, laser sintering, 3D model, metal printer, 3D printing, laser melting, synthesis of the materials
 
Realizer SLM-50 3D printer

Manufacturer: Realizer GmbH
Model: Realizer SLM-50
Functioning principle: micro laser melting
Dimensions of the machine: (L)800 mm * (D)600 mm * (H)500 mm
Working area: (maximum dimensions of the product): diameter 70 mm * depth 75 mm
Printable materials: stainless steel, Al, Ag, Ti (Fe, Al, Co, Ti based alloys)
Laser: 120 W

Contact:
Alar Niidas
Phone +372 55 54 69 68
Alar.Niidas@taltech.ee

printer6
printer7
printer8

3D scanning

3D scanner, Nikon MMDx100 + ABB robot services

Name of the machine: 3D scanner Nikon (infrared LED laser) + ABB robot
Type of the machine: scanning devices
Location: Talinn University of Technology, U05B-208
Restrictions: dimensions of the product, access to use the machine
Tags: 3D scanner, laser scanner, 3D model, 3D scanning, synthesis of the models
 
 
Nikon MMDx100 scanning device
 
Manufacturer: Nikon Metrology Europe + ABB
Model: Nikon MMDx100 system + ABB IRB1600-10 robot
Functioning principle: 3D scanning using the LED laser
Dimensions of the machine: robot (800x800x1200 mm), controller (600x800x1000 mm), tripod for cameras
System includes: robot, measuring head, camera, tripod, controllers, PC with software (Focus Point Cloud Inspection)
Working area (maximum dimensions of the work envelope): volume about 17 m3, practically  unlimited (scanned models can be stitched together)
Resolution:  2 microns when distance from camera is 2500 mm
Scanning time: depends of the product complexity

Contact:
Alar Niidas
Phone +372 55 54 69 68
Alar.Niidas@taltech.ee

skanner
skanner1

3D scanner, GOM ATOS II 400 services

Name of the machine: 3D scanner ATOS II 400 (Structured Light)
Type of the machine: scanning devices
Location: Tallinn University of Technology, U05B-103, Rapidlab
Restrictions: dimensions of the product, access to use the machine
Tags: 3D scanner, structured light scanner, 3D model, 3D scanning, synthesis of the models
 
GOM ATOS II 400 scanner
 
Manufacturer: GOM
Model: ATOS II 400
Functioning principle: 3D scanning using structured white light
Dimensions of the machine: (P)300 mm * (L)500 mm * (K)500 mm, mobile
System includes: camera, tripod, table, PC with software
Working area (maximum dimensions of the product): practically unlimited (scanned models can be stitched together)
Resolution:  depends of the object distance (from 0,02 mm up to 0,79 mm)
Scanning time: depends of the product complexity

Contact:
Alar Niidas
Phone +372 55 54 69 68
Alar.Niidas@taltech.ee

skanner3



 

Acoustics testing

Noise and vibration measurements

1.    Determination of sound reduction index Rw 

Reverberation room method according to ISO 10140:2010. Standard openings 1.5x1.25 m and 2.1x1.0 m. Frequency range 100 – 3150 Hz in third octave bands.

akustika

2. Determination of sound absorption coefficient, weighted sound absorption coefficient and noise absorption class for materials and products

Reverberation room method according to EN ISO 354:2003 and EVS-EN ISO 11654:1999. Recommended sample size 2-2.5 m2. Frequency range 100 – 5000 Hz in third octave bands.

akustika1

3.    Determine the absorption coefficient for materials

Impedance tube method following ISO 10534-2:1998. Frequency range 50 – 6500 Hz.

akustika2

4.    Vibration testing of materials and products

Vibration Test System with slip table TV 5220-120 TGT MO 12XS

•    Frequency range 2 – 7000 Hz
•    Max. displacement Pk - Pk 25.4 mm
•    Max. acceleration Sine/Random/Shock 60/40/79 g

Slip table TGT MO 12XS

•    Moving plate working area 305*305 mm
•    Max. testing object weight 100 kg

akustik3


CONTACT:
Jüri Lavrentjev
juri.lavrentjev@taltech.ee
Phone +372 5109107 

Expertise and engineering services

Expertise work and engineering services are mostly needed to identify the causes of failure or the processes that led to failure or prevent failure. Expertise work is not only carried out to resolve disagreements between the parties but also in situations where the manufacturer or user of the product is investigating any process or characteristic related to the product:

  • the fracture / wear of a particular item;
  • premature failure of re-conditioned machine part e.g. breakage / wear;
  • the causes for rejected parts during production;
  • the suitability / characteristics of the used material 

 
When accepting and ordering expertise work,  the following must be considered:

  •  the expert's assessment is only for the part/component provided by the customer;
  • the tests carried out must remain within the competence of the  laboratory;
  • all questions cannot be answered unambiguously.
     

Contact:
To lab's front page www.taltech.ee/en/laboratory-of-mechanical-testing-and-metrology

Testing of welded joints

We offer accredited testing services for welded joints (including rails).

Test methods:

  • bending test
  • hardness test
  • tensile test
  • Charpy Impact test
  • micro and macro structure analysis
  • determination of the fraction of ferrite

 
Welding procedure tests used for arc welding of steels

Mechanical tests and microstructural analysis for verification of the welding procedure are carried out in accordance with EVS-EN 15614. The manufacture and testing of test samples are specified in Sections 6 and 7 of EVS-EN 15614 (Specification of welding procedures for metallic materials and attestation-welding procedures in steel arc welding) in sections 6 and 7. The welder who satisfactorily performs the welding according to the procedure stated in the above mentioned standard is deemed to have been certified according to the relevant part of the EVS-EN ISO 9606-1.

keevis

Contact:
To lab's front page www.taltech.ee/en/laboratory-of-mechanical-testing-and-metrology

Cemented carbides and cermets

The losses resulting from wear in life cycle cost of equipment may be tremendous. In some industries recycling of wear parts and consumables may compose up to 40% of life cycle costs. Decreasing of these costs is possible using wear resistant composites – cemented carbides and cermets. These materials are ceramic-metal composites produced using powder metallurgy (PM) technology – compaction of green compacts followed by hot consolidation (sintering).
Cermets are composite materials composed of hard ceramic (prevalently carbides or carbonitrides) and metal (usually Co, Ni, Fe) materials. Cemented carbides (hardmetals) are ceramic-metal composite materials on basis of tungsten carbide (WC).

kermis

Cemented carbides with cobalt binder WC-Co have been attained the most attention. These composites are used for production of machining tools and other wear resistant products with high hardness and strength. Cermets, usually based on titanium carbide (TiC) or titanium carbonitride (TiCxNy) are used instead of cemented carbides in specific application fields due to their superior wear and corrosion properties.

Opportunities of the PM laboratory
Products and prototypes from cemented carbides and cermets for companies are produced using technological opportunities of the PM laboratory of Tallinn University of Technology:

  • equipment for comminution and mixing of starting powders (ball mills, attritors etc.)
  • presses for powder compaction;
  • equipment for hot consolidation: vacuum and sinter/HIP furnaces, equipment for hot isostatic pressing (HIP) and spark plasma sintering (SPS).

Application examples

kermised1
  • wearing parts of metal forming tools (punches and dies)
  • wearing parts of mining equipment (cutters)
  • wearing parts of disintegrators and other milling equipment
  • studs of automobile tyres etc.
     

Contact:
Alar Niidas
Phone +372 55 54 69 68
Alar.Niidas@taltech.ee

Grinding and recycling of materials

We offer accredited analysis for powder materials. Test methods: sieving analysis, fractional composition. We have experienced team and calibrated equipment.

Contact:
To lab's front page 

Determination of material composition

The materials chemical composition and microstructural analysis are mostly needed in the following cases:

  • for the assessment of material conformity
  • for identification of the material during expertise work
  • to determine the material designation of the broken product
  • to develop part/product heat treatment technology.


It is advisable to assess the conformity of the material whenever there is a suspicion that the purchased material does not meet the specified chemical composition rquirements. The additional costs occurring due to use of non-conforming material exceeds the costs to determine the materials designation forehand significantly. Damage may be due to the non-machinability of the material (deformability, weldability, cutting performance, heat transferability, heat-transferability, etc.), the product does not meet the required mechanical properties (low strength, brittleness, low wear resistance, low impact-resistant, etc.).

struktuur1

Structural analysis of the material (micro- and macrostructure) also allows to assess the conformity of the material (eg, the proportion of ferrite, the grain size, non-metallic inclusions, porosity, liquidation, cracks, etc.) and allows us to assess the quality of the heat treatment (structure, depth of hardening, decarburisation depth) and it is possible to find out the technological operations performed on the part/product (forging, rolling, etc.).

When new material is to be purchased as an additional cost when purchasing the wrong material, indirect costs are associated as higher workloads, failed delivery times, loss of customer confidence, will also be added.

Contact:
To lab's front page www.taltech.ee/en/laboratory-of-mechanical-testing-and-metrology

Metallide ja nende sulamite struktuurianalüüs nimetatakse metallograafiaks. Metallograafia on üldjoontes purustav kontroll, mille käigus lõigatekse uuritavast detailist proovitükk (suurusjärgus 5...40 mm) ja see lihvitakse, poleeritakse ning seejärel söövitatakse. Peale poleerimist tulevad töödeldud pinnal esile mittemetallsed lisandid ja tühimikud ning praod (makrostruktuur, suurendus <50x). Poleerpinnalt on võimalik mõõta mikrokõvadust ja näha on ka pinded. Söövitamise tulemusel tuleb esile materjali mikrostruktuur (terade ja faasidevahelised piirjooned, suurendus >50 x). 
Mikrostruktuuri või makrostruktuuri analüüs lõpeb enamasti arvutis foto töötlusega ja sinna selgitavate tekstide ja jooniste lisamisega, mis ühtlasi jääb ka dokumenteeritud materjaliks ning esitatakse lisadena.

koostis


Mikrostruktuuri analüüsitakse järgmistel eesmärkidel:

  • Materjali mikrostruktuur (tera suurus, kuju, struktuuris esinevad faasid). Lisaks on mikrolihvilt võimalik uurida ka erinevate struktuuriosade mikrokõvadust ja keemilist koostist elektronmikroskoobis.
  • Mikrostruktuuri põhjal on võimalik anda mõningatel juhtudel hinnang materjali keemilise koostise kohta.
  • Materjali pinna analüüs (pinded, termokeemiline töötlus, süsiniku väljapõlemine, teradevaheline korrosioon).


Materjalis olevad defektid:

  • mittemetalsed lisandid (räbu, grafiit),
  • poorsus (gaasi ja kahanemispoorid),
  • likvatsioon (erinevate osakeste kuhjumine, näiteks karbiidide kuhjumine terade vahele termotöötluse tulemusel),


Makroanalüüsil jääb vaatevälja suurem ala ja silm eristab üksikute suurelt nähtavate detailide asemel terviklikku pilti. Makroanalüüsi võib teostada detaililt töötlemata (näiteks murdepinna analüüs) või siis tehakse sarnaselt mikrolihvile makrolihv. Makrolihv on enamasti rohkem söövitatud, kuid ei pruugi erineda mikrolihvist.

Makrostruktuuri uuringutega on võimalik määrata järgmisi asjaolusid:
Materjali pinna analüüs (suuremad pinded, termokeemiline töötlus, süsiniku väljapõlemine, teradevaheline korrosioon).

Materjalis olevad suuremad defektid:

  • mittemetalsed lisandid (räbu, grafiit);
  • poorsus (gaasi ja kahanemispoorid);
  • makropraod (termilisest töötlemisest, väsimusest);
  • tekstuuri (terade orentatsiooni, mis on tingitud enamasti plastsest deformatsioonist)


Murdepinna analüüs:

  • purunemise iseloom (habras-, väsimuspurunemine);
  • purunemispõhjuste selgitamine.


Mikro- või makrolihvi valmistamisel sisaldab teenus järgmisi operatsioone: 

  • võimalikku katsekeha tükeldamist;
  • võimalikku vormi pressimist (kas 25, 30 või 50 mm vormi);
  • lihvimist/poleerimist;
  • vajadusel söövitamist. 


Edasine struktuuri analüüs toimub mikrstruktuuri uuringutena mikroskoobis või siis murdepinna uurimine palja silmaga või binokulaarse mikroskoobiga ning järelduste fikseerimine fotodele koos seletustega.

Tellimine ja kontakt

Katselabori esilehele www.taltech.ee/mlab

Materjali keemiline koostise määramine on kõige enam vajalik järgmistel juhtudel:

  • margivastavuse hindamise jaoks,
  • ekspertiisides materjali tuvastamiseks,
  • purunenud toote materjali määramiseks.


Materjali margivastavuse kontrolli on soovitatav läbi viia alati kui on kahtlus, et ostetud või ostetav materjal ei vasta margiga määratud keemilisele koostisele. Tarnitud vale materjal poolt tekitatud lisakulutused ületavad reeglina materjali margivastavuse määramiseks tehtavad kulutused mitmekordselt. Kahju võib seisneda materjali mitte töödeldavuses (deformeeritavus, keevitatavus, lõiketöödeldavus, kuumtsingitavus, termotöödeldavus jne), toode ei vasta nõutud mehaanilistele omadusetele (tugevus väike, külmaga muutub hapraks, kulub kiiresti, ei kannata löökoormusi jne).
Kui vale materjali ostu korral tuleb osta lisakulutusena uus materjal, siis enamasti lisanduvad ka kaudsed tootmiskulud, mis väljenduvad suuremates töömahtudes, hilinenud tarneaegades, klientide usaldusväärsuse languses/kaotuses, hilisemates vaidlustes materjali müüa ja toote tellijaga.

Keemilise koostise määramiseks teostatakse järgmised operatsioonid:

  • valitakse õige baas (Fe, Cu või Al) ja seejärel õige programm, mis määrab ka elementide arvu ja piirmäärad (vt. tabelit pdf);
  • seade kalibreeritakse;
  • kalibreeritud seadme näitu kontrollitakse MBH analytical LTD poolt sertifitseeritud katsekehadega;
  • katsekeha pind puhastatakse ja töödeldakse vajaliku pinnakareduseni;
  • määratakse katsetatava materjali keemiline koostis massiprotsentides.


Vastavalt keemilisele koostisele materjali margi määramine on lisatasu eest teostatav operatsioon.

Keemilise koostise määrame toimub spectraalanalüsaatoril ( Atomic Emission Spektroscopy by Spark AES: sädelahendusel toimuv aatomite emissioonspektroskoopia) Spectrolab M, millel on kolm baasi (sulami põhielementi): Fe, Cu ja Al. Keemilist koostise määramise võimalused on piiratud määratavate elementide piirväärtusetega (vt. tabelit pdf).

Analüüsi teostamiseks on vajalik proovikeha gabariit- mõõtudega 50x10x20 mm, ümarmaterjalide puhul minimaalse diameetriga 14 mm ja materjali paksusega vähemalt 2 mm. Maksimaalsed gabariitmõõdud on 200x50x100 mm.

spectro

Erinevate TalTech laboritega koostöös on võimalik meil lahendada keemilise analüüsi määramisel erinevaid spetsiifilisi probleeme kasutades elektronmikroskoopi ning konsulteerides keemikutega.

Tellimine ja kontakt

Katselabori esilehele www.taltech.ee/mlab

Mechanical testing

Mechanical testing is part of the material characterization (determining the designation) in addition to chemical composition and structural analysis. Tests are carried out according to standards using suitable test pieces. The exact testing method is agreed with customer.

Mechanical testing can be divided into three groups namely strength, toughness and hardness testing.

As a result of strength tests, the ultimate and yield strength and elongation to fracture are determined and the toughness test determines the ability of the material to withstand impact or resistance to crack growth. The hardness test evaluates, in particular, the heat treatment quality and also the wear resistance of the material

mehaanilised katsed

We have experienced team and calibrated equipment.

Contact:
To lab's front page www.taltech.ee/en/laboratory-of-mechanical-testing-and-metrology

Tõmbeteim

tõmbe

Metallide, sulamite ja keevisliidete tõmbeteim viiakse läbi vastavalt standardile EVS-EN ISO 6892-1. Võimalik on määrata järgmisi materjalide tugevus- ja plastsusomadusi:

  • tinglik voolavuspiir Rp0,2 (N/mm2)
  • tõmbetugevus: Rm (N/mm2);
  • ülemine voolavuspiir: Reh (N/mm2)
  • alumine voolavuspiir: Rel (N/mm2)
  • katkevenivus: A (%)
  • katkeahenemine: Z (%)
  • elastsusmoodul (youngi moodul): E (N/mm2).


Vajadusel võidakse määrata ka teisi parameetreid (elastsuspiir, töö katsekeha purustamiseks, pinge purunemisel jm.).
Teenuse hinnas sisaldub teimikute valmistamine kliendi poolt toodud materjalist (reeglina 3 tk), katsete läbiviimine ja katsetulemuste esitamine protokollis. Nõuded teimiku kujule ja mõõtmetele on toodud standardis EVS-EN ISO 6892-1. 
Parim mõõtevõime: pinged ±2,5 N/mm2, katkevenivus ja katkeahenemine ±1%.

Löökpaindeteim

löök

Löökpaindeteim on materjali sitkuse määramise põhimooduseid, mille järgi hinnatakse kas materjalil on kalduvust haprale purunemisele. Löökpaindeteim seisneb sisselõikega proovikeha purustamises pendellöömikuga ja purustustöö või löögisitkuse määramises. Metallide, sulamite ja keevisliidet löökpainde teim Charpy meetodil viiakse läbi vastavalt standardile EVS-EN ISO 148-. Üldjuhul antakse purustustöö temperatuuridel 20°C, kliendi soovil on võimalik Charpy teimi läbi viia ka madalatel temperatuuridel (-20 °C... -40 °C).
Teenuse hinnas sisaldub teimikute valmistamine kliendi poolt toodud materjalist (reeglina 3 tk), katsete läbiviimine ja katsetulemuste esitamine protokollis. Nõuded teimiku kujule ja mõõtmetele on toodud standardis EVS-EN ISO 148-1
Parim mõõtevõime: löögisitkus ± 1,0 J, külmahapruse lävi ±5 °C.

Tellimine ja kontakt

Katselabori esilehele www.taltech.ee/mlab

Kõvadus on materjali võime vastu panna kohalikule plastsele deformatsioonile, kui tema pinda tungib suurema kõvadusega keha.
Kuna kõvaduskatse kahjustab katseobjekti pinda vähe ning mõõtmine toimub suhteliselt kiiresti, kasutatakse kõvadust sageli materjali mehaaniliste omaduste hindamiseks ning kvaliteedi kontrolliks. Näiteks kasutatakse kõvaduskatset metallisulamite termotöötluse hindamisel ning oletatavate (kahjulike) karastusstruktuuride kindlakstegemiseks keevisõmbluse ümbruses. Materjali kõvaduse määramiseks kasutatakse järgmisi meetodeid ning vastavaid kõvadusmõõtureid.

Brinelli meetod (ISO 6506-1; DIN 50351)
Rockwelli meetod (EVS EN 6508-1; DIN 50103; GOST 8064-79)
Vickersi meetod (ISO 6507; EN 1043-1; DIN 50133; GOST 2999-75)
Universaalmeetod (DIN 50359-1, EN ISO 14577-1).

kõvadus

Õhukeste pinnete või materjali erinevate struktuuriosade kõvaduse määramiseks kasutatakse Vickersi mikrokõvaduse skaalat. Kasutatavad koormused on  väikesed (10…200 g).

Kõvaduse määramiseks kasutatav meetod sõltub järgmistest asjaoludest:

  • katsekeha kõvadus (meetodi piirangud)
  • katsekeha paksus
  • katsekeha suurus
  • pinna seisund ja kuju.


Suurte ja raskete katseobjektide, mille toimetamine laborisse on raske või võimatu, kõvadust on võimalik määrata kasutades portatiivset kõvadusmõõturit DORERNST.

Tellimine ja kontakt

Katselabori esilehele www.taltech.ee/mlab

Coating

PVD (physical vapor deposition) is an environmentally friendly vacuum coating process with no hazardous by-products resulting brilliant decorative finisheswith excellent wear and corrosion resistance.

Coatings are very thin (1-5 microns) and therefore do not affect the measurements of the detail.
 
Coatings improve quality of the product:

  • significantly higher wear resistance
  • low coefficient of friction
  • better corrosion and chemical resistance
  • increased life-time
  • higher productivity of tools 


PVD coating adds durability and value to your product - it is four times harder than HSS (high speed steel) 

Main uses: 
cutting tools (mills, drills, reamers)
stamping, punching and forming 
injenction moulding
tribological applications (engines and medical equipment etc.)
decorative (jewellery, watches etc.) 

Compact hardcoating unit Platit π-80

Pindamise
EM_coat

Contakt:
Eron Adoberg
Phone +372 515 9432
eron.adoberg@taltech.ee

PTA cladding technology

  • PTA (plasma transferred arc) cladding is a hardfacing technology, where cladded material is melted by the heat of ionized gas (plasma) that forms in the proximity of the electric arc, struck between the non-melting tungsten electrode and the workpiece.
  • Hardfacings are usually >1 mm thick 
  • Heat input to the substrate is relatively low (to be compared with other cladding methods)
  • PTA hardfacings improve resistance to all types of wear of the cladded workpiece
  • PTA hardfacings may also be used for restoration of worn machine parts

 
Application examples: 

  • rolls of the sheet rolling machines
  • wood cutting tools
  • diesel engine pistons
  • cultivator blades
  • turbine blades 
     

Product portfolio

  • PTA hardfacing unit EuTronic Gap 3001 DC (Castolin Eutectic®) with two powder feeders, supplemented by automatic manipulator
  • flat-shape parts
  • maximum size of a cladded part l500 × w300 × h100 mm
  • maximum weight of a cladded part 135 kg
  •  available hardfacing materials – Ni-based self-fluxing alloy (NiCrSiB), stainless steel (X2CrNiMo18-14-3), stellite (CoCrMoNi), tungsten carbide (WC/W2C; only in combination with metal alloys)
keevitus

Coating propeties

EM_coat2

Contakt:
Andrei Surženkov
Phone +372 620 3347
andrei.surzenkov@taltech.ee

Measurement and testing of products

We offer accredited product testing service.

Test methods:

  • Fatigue test for mechanical couplings
  • Mechanical testing of fasteners
  • Verification of machined parts by measurement
  • Measurement of geometric parameters

 
Using a servo-hydraulic test systems, it is possible to flexibly perform product mechanical testing. Testing can carried out by quasi-static (slow loading) and dynamic (fatigue testing) loading.
 
Products that can be tested:

  • Towing hooks for cars, minibuses and SUVs,
  • Profile materials and their joints,
  • Construction elements, fixtures etc.

 
The main limitation is the possibility of attaching the product to the test machine. One of the test machines is equipped with a T-slot table with dimensions of 800 x 870 mm. it's possible to attach the product to the T-slot table either directly or using fixtures and slots in the table.

katsetamine
katsetamine

Contact:
To lab's front page www.taltech.ee/en/laboratory-of-mechanical-testing-and-metrology

Analyse and simulation of production processes

ANALYSE AND SIMULATION OF PRODUCTION PROCESSES 

Analyse and simulation of the production processes include different operations like: 

  • optimization of production and management processes; 
  • analyse of the production bottlenecks; 
  • comparison and analyse of different Key Performance Indicators; 
  • optimal layout of equipment and operators; 
  • equipment usage analyses etc. 

Simulation allows to visualize production processes, analyse material flows and optimize internal logistics.

Contact:
prof. Kristo.Karjust@taltech.ee

Research Laboratory of Tribology and Materials Testing

Testing methods and equipment

Tribology is the science and technology of interacting surfaces in relative motion, including the subjects of friction, lubrication and wear. The "Research Laboratory of Tribology and Materials Testing" specialises in abrasive, erosive, impact and sliding wear.

The best way to characterise the suitability of materials for certain working conditions is to simulate wear in laboratory conditions. The "Research Laboratory of Tribology and Materials Testing" of the "Department of Mechanical and Industrial Engineering" has years of experience in this field. Laboratory has designed and manufactured several unique wear testing machines, which allow to model different wear modes and to select the most suitable material for the given conditions.

Contact:
Maksim Antonov
Phone +372 620 3355
maksim.antonov@taltech.ee

Visit our homepage

Some example of possible abrasive wear methods:

1
2
3
4